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ABSTRACT

One of the key challenges in the field of genetics
is the inference of haplotypes from next generation
sequencing data. The MinION Oxford Nanopore se-
quencer allows sequencing long reads, with the po-
tential of sequencing complete genes, and even com-
plete genomes of viruses, in individual reads. How-
ever, MinION suffers from high error rates, rendering
the detection of true variants difficult. Here, we pro-
pose a new statistical approach named AssociVar,
which differentiates between true mutations and se-
quencing errors from direct RNA/DNA sequencing
using MinION. Our strategy relies on the assump-
tion that sequencing errors will be dispersed ran-
domly along sequencing reads, and hence will not be
associated with each other, whereas real mutations
will display a non-random pattern of association with
other mutations. We demonstrate our approach us-
ing direct RNA sequencing data from evolved popula-
tions of the MS2 bacteriophage, whose small genome
makes it ideal for MinION sequencing. AssociVar in-
ferred several mutations in the phage genome, which
were corroborated using parallel Illumina sequenc-
ing. This allowed us to reconstruct full genome viral
haplotypes constituting different strains that were
present in the sample. Our approach is applicable
to long read sequencing data from any organism for
accurate detection of bona fide mutations and inter-
strain polymorphisms.

INTRODUCTION

A major goal of genetics today is the characterization of
genetic diversity in a population. In microbes, such diver-
sity is generated in particular by high mutation rates, which
may generate both nucleotide substitutions as well as point
insertions or deletions (indels) (1). Longer indels may also
occur (2), as may events of genetic recombination. Disease
pathogenesis, progression, management and epidemiology

are all affected by the genetic diversity created in microbial
populations (3–9). Thus, characterizing this diversity is of
utmost importance in clinical as well as research settings,
which makes the development and improvement of suitable
sequencing technologies crucial (10–12). The availability of
second-generation DNA sequencing technologies (13), with
the Illumina platform currently at the forefront, has made
the sequencing of genomes conventional. In particular, this
technology has dramatically furthered the study of viruses,
whose relatively small genomes allow in depth characteriza-
tion of a population of viruses (14,15).

Illumina-based sequencing allows the detection of mi-
nor variants that the standard Sanger-based method often
missed. However, Illumina short-read sequencing technolo-
gies all share one major limitation, the short length of each
read, which typically ranges between 75 and 600 bp (for a
paired end read). This means that a complete viral genome
sequence cannot be obtained in a single read, impairing
the ability to link distant mutations in an individual viral
genome. Another Illumina limitation is that RNA cannot
be sequenced directly. During library preparation, RNA is
reverse-transcribed into cDNA and amplified by PCR. This
creates multiple problems that have been extensively dis-
cussed but not resolved (10): first, reverse transcription and
PCR may introduce errors during early stages of amplifi-
cation that will be carried on to later stages (16–18). Sec-
ond, some molecules may be preferentially amplified over
others, a term known as PCR bias. Third, PCR and reverse
transcription reactions can often result in chimeric DNA
sequences that originate from different molecules (19–21).
Together, these problems make the inference of haplotypes
from PCR-based libraries that are sequenced with Illumina
extremely limited.

Currently, single-molecule third-generation sequencing
systems, such as Oxford Nanopore Technologies, provide
a promising alternative for sequencing full-length single vi-
ral genomes (22). In fact, these technologies now allow di-
rectly sequencing either DNA or RNA. The long reads pro-
vided by these methods have the potential to allow for the
inference of up to an entire genome of a typical RNA virus,
whose genome is generally shorter than 10,000 bp (23–27).
However, one of the major shortcomings of the third gener-
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ation technologies are their relatively high error rates, with
the proportion of errors on a read often exceeding 10%
(28,29). This high error rate makes the detection of true
single-nucleotide variants very difficult (7,30,31).

Here, we devised a simple statistical procedure called As-
sociVar that allows weeding out real mutations from techni-
cal errors using only the MinION sequencing results. We fo-
cused our analysis on the MS2 bacteriophage, an extremely
small (3569 bases) and fast evolving +ssRNA virus (32,33)
that is highly amenable to direct sequencing with Oxford
Nanopore MinION. We sequenced virus populations in
parallel using both MinION and Illumina, allowing us to
corroborate the inferences of AssociVar. This then allowed
us to directly infer relationships between mutations and to
deduce the entire genome sequences of viral strains in the
population. We were also able to use AssociVar to analyze
a yeast mRNA sample and data of mixed strains of Zika
Virus. This illustrates the generality of our approach which
can be applied to other organisms as well.

MATERIALS AND METHODS

During the course of an evolve-and-resequence experiment,
we performed serial passaging of the phage MS2 (Meir
et al., in preparation). Briefly, clonal MS2 stock was propa-
gated from a single plaque that was the precursor of all the
evolutionary lines established in this work. We performed
15 serial passages at 37◦C with two biological replicates
(hereby denoted as A and B). The serial passages were per-
formed as follows: 100 ml cultures of naive Escherichia coli
C-3000 were grown up to an optical density of OD600 =
0.4 (corresponding to a density of about 108 cells/ml). Each
passage was infected with 10 ml of 109 phages from the pre-
vious passage. The cultures were grown for 16 h at each tem-
perature with shaking, and the E. coli cells were then re-
moved by centrifugation. The supernatant was subjected to
filtration with 0.22 �m filter (Stericup® Filter, EMD Mil-
lipore) to remove any remaining residues. Naive hosts were
provided for each passage. The new phage stock was then
stored at 4◦C. Aliquots of these phage stocks were used for
measuring the concentration of phages by plaque assay and
infecting the next serial passage. We then determined the
population frequency of each mutation at passage 1 and
passage 15 through whole genome deep sequencing as de-
scribed below, using Illumina and MinION.

Illumina library preparation

Library preparation was performed according to our lab’s
AccuNGS sequencing protocol (34) with some modifica-
tions: The reverse transcription reaction was performed us-
ing SuperScript® III Reverse Transcriptase (Thermo Scien-
tific), the reaction was performed on 500 ng of RNA phage
with 1 �l of dNTP mix (10 mM), 1 �l of 3R primer (TG
GGTGGTAACTAGCCAAGCAG) (10 �M) and 10 �l of
sterile distilled water. The mixture was incubated for 10 min
at 65◦C followed by incubation on ice for 7 min. After brief
centrifugation, 4 �l of 5X First-Strand Buffer were added
along with 1 �l DTT (0.1 M), 1 �l of RNase OUT (Thermo
Scientific) and 1 �l of SuperScript™ III RT (200 units/�l).
The mixture was incubated for 60 mins at 55◦C followed by

inactivation for 15 mins at 70◦C. The last step was adding
1 �l of RNase H to the reaction according to manufacturer
instructions. cDNA from the reverse transcription reaction
was directly used as a template for the PCR amplification of
the full MS2 genome in three overlapping fragments. PCR
reactions were performed using ‘Phusion High-Fidelity
DNA-polymerase’ (Thermo Scientific) according to man-
ufacturer instructions with the primers: 1F (GGGTGGGA
CCCCTTTCGG), 1R (TTTTTCTAGAGAGCCGTTGC
CT), 2F (GGCCCAAATCTCAGCCATGC), 2R (CGTG
TCTGATCCACGGC), 3F (GGCACAAGTTGCAGGA
TGCA), 3R (TGGGTGGTAACTAGCCAAGCAG), see
Supplementary Figure S6. After PCR, the three amplicons
were purified with a PCR clean up kit (Promega). Puri-
fied amplicons were quantified with Qubit assays (Q33216,
Life Technologies), diluted and pooled in equimolar con-
centrations. The Illumina Nextera XT library preparation
protocol and kit were used to produce DNA libraries, ac-
cording to manufacturer instructions with some modifica-
tions. Briefly, the tagmentation reaction was performed with
0.8 ng/�l of DNA, 10 �l TD Buffer, 5 �l ATM enzyme
and up to 5 �l DDW. The mixture was incubated for 5
min at 55◦C and then directly used as a template for 50
�l PCR reaction using ‘Phusion High-Fidelity DNA- poly-
merase’ (Thermo Scientific) according to manufacturer in-
structions with the index primers from the Nextera XT kit.
After PCR, a double sized selection was performed using
Ampure beads to remove short and long library fragments,
since 350 bp fragments were required. We collected the su-
pernatant and read 2 �l from each sample in the TapeSta-
tion (Agilent high sensitives D1000) to verify fragment size.
The yeast enolase sample was prepared as described for the
phage RNA. RT and PCR amplification were performed
using primers: E1 (ATGGCTGTCTCTAAAGTTTACG
CTA) and E2 (TTACAACTTGTCACCGTGGTGG). Li-
braries were sequenced on an Illumina Miseq using the 2 ×
250 MiSeq reagent kit (Illumina, MS-102-2003) for paired-
end reads.

Illumina MiSeq read mapping

Bioinformatics processing of the data was performed us-
ing the AccuNGS pipeline (34) with the default parame-
ters (minimal %ID = 85, e-value threshold = 1E−07 and
Q score cutoff of 30). Briefly, this pipeline is based on (a)
mapping the reads to the reference genome using BLAST,
(b) searching for variants that appear on both overlapping
reads, (c) calling variants with a given Q-score threshold and
inferring their frequency. All libraries attained a mean cov-
erage of ∼10,000 reads/base. The reference genome was de-
termined by comparing the consensus of passage 1 to Gen-
Bank ID V00642.1 (differences noted in Supplementary Ta-
ble S1). When examining the results of the control sequence
(a plasmid bearing the MS2 genome), we noted a high error
rate at several positions that resided near the primer sites,
and accordingly 30 positions from each end of the genome
were excluded from downstream analysis.

Long-read Oxford Nanopore MinION sequencing

The Oxford Nanopore MinION was used to sequence the
MS2 RNA directly. We sequenced the three samples (p15A,
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p15B and p1A) in three separate runs. We prepared direct
RNA libraries according to manufacturer library prep in-
structions with some modifications. We altered the supplied
reverse transcriptase adapter (RTA) (22), which has a T10
overhang, to specifically target the MS2 genome with 22 nu-
cleotides complementary to the MS2 conserved 3′ end (Sup-
plementary Figure S6). The ligation reaction was performed
with 500 ng RNA in 9 �l, 100 nM costume adapter in 1
�l, 10 �l of NEBNext Quick Ligation Buffer and 1.5 �l of
T4 DNA Ligase enzyme (NEB). The mixture was incubated
for 10 min at 65◦C followed by incubation on ice for 2 min
and then directly used as a template for the next step of the
library prep which is cDNA synthesis according to man-
ufacturer instructions. The cDNA synthesis step was per-
formed in order to maintain the RNA fragments integrity
during MinION library prep and sequencing. The library
was cleaned up each time using 2 �l of AMPure XP DNA
beads per 1 �l of sample and we added 3 �l of RNase OUT
(Thermo Scientific) to protect the RNA. The RNA was di-
rectly sequenced on the MinION nanopore sequencing de-
vice using a FLO-MIN107 flow cell equipped with the R9.5
chemistry. The MinKNOW control software version 1.14.1
was used and was allowed to proceed for 48 h. The base-
calling was performed locally by the Miniknow software as
well, and the data was written out in the FASTQ format.
Reads were filtered with the MiniKNOW default cutoff of
a minimum average q-score of 7. The AccuNGS pipeline
(34) described above was next applied to the data in order
to determine variant frequencies. BLAST parameters were
modified to minimal % identity = 60, e-value threshold =
1E−07 and no q-score cutoff, to allow the highly variable
minion reads to map. As with the Illumina results, 30 po-
sitions from each end of the genome were excluded from
downstream analysis. This also solved the problem of very
low coverage areas in the MinION sequencing.

MinION variant distributions and error rate estimation

Variant frequency distributions for MinION and MiSeq
were calculated by using the AccuNGS pipeline results. For
substitutions and deletions, the distribution is straightfor-
ward and accounts for the results for all bases. For inser-
tions, we focused on point insertions, defined as the first in-
sertion after any position, in order to create the frequency
distributions. Positions close to the ends of the genome that
show a high error rate in MiSeq due to primer proximity
were removed from this analysis. To calculate the error rate,
we sequenced a control sample from the beginning of the
passaging experiment (p1A), and the mean, 95th percentile
and 99th percentile errors were calculated for every error
type.

AssociVar: association tests to identify real mutations

AssociVar searches for strong associations between variants
as an indication that these represent bona fide mutations.
The method is based on five stages:

(a) Detecting non-random associations. For each pair of
positions, a read is classified into four categories based
on whether the read bears the WT nucleotide (i.e., iden-
tical to the reference genome) or non-WT nucleotide

(i.e., different from the reference genome) at each of the
two given positions. We use this to create a 2 × 2 con-
tingency matrix of observed counts, which is then used
as the input for a chi-square test and a resulting chi-
square statistic (see supplementary text). We focus only
on contiguous reads that spanned the entire genome.
Notably at this stage we focus only on WT versus non-
WT assignments (rather than the exact identity of the
non-WT allele) for computational tractability. This is
relaxed later on.

(b) Removing proximal positions. Since we observed that
positions that are highly proximal (<15 bp apart) often
tended to be highly associated, and we suspected this is
an artifact of the sequencing machine, chi square results
for all such proximal positions were removed from the
analysis.

(c) Normalization of the chi-square statistic. To make the
different positions comparable, we normalized the chi
square statistics per position by calculating a modified
z-test score z for the chi-square statistic x of each pair of
positions (p1, p2). This was done by dividing the differ-
ence between x and the median by the median absolute
deviation (MAD) and multiplying the result by 0.6745,
as follows: z = 0.6745 ∗ (x − median)/MAD. Thus,
for each position p1 we calculated its median and its
median absolute deviation across the chi-square statis-
tics for position p1 and any other position q. This es-
sentially served to test whether some positions display
strong outliers in their chi-square statistics (35), as can
be seen visually for bona fide mutations displayed in
Figures 4 and 5.

(d) Local maximum analysis. Because positions proximal
to each other tend to present spurious high associa-
tions, due to transitivity we expect a position next to
a real mutation to also be highly associated with other
positions with real mutations. In other words, if posi-
tions p and q are highly associated because they are real
mutations, and positions q and q + 1 are highly associ-
ated because they are proximal, we will see a high as-
sociation between positions p and q + 1 as well. How-
ever, we expect the association between the real mu-
tations to be the highest, i.e. to be a local maximum
in the surroundings of a given pair. A normalized chi
score’s surroundings is defined as the four neighboring
normalized chi scores when the data is regarded as a
two-dimensional matrix. For example, the normalized
chi score for (p, q) is required to be higher than the nor-
malized chi scores for (p, q − 1), (p, q + 1), (p − 1, q)
and (p + 1, q).

(e) Use of a control sequence. In order to create a cutoff for
the normalized chi-square statistic, we used the values
obtained for a control sequence (Supplementary Figure
S3). We know that our control sample was not com-
pletely homogenous, since it contained two mutations
at a frequency slightly higher than 10%. Nevertheless,
it served as a valid control when setting a confidence
rate of 99.9%, i.e. calculating the normalized chi score
that allows 0.1% of the positions in our control sample
to be identified as significant (allowing for three ‘false
positive’ positions in our case).
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After stages (a) through (e), AssociVar infers n positions
with real mutations in the population. The last stage is to
identify the identity of the mutations (A, C, G, T, −), in a
similar way to that described in (a). Insertions are ignored
here. Every position has four possible alternative variants
(the three nucleotides that differ from the reference, or a
deletion), and we test these variations against each other us-

ing chi-square tests, leading to 4n × 4(n−1)
2 ≈ 42(

n
2) different

tests, where n is the number of positions previously iden-
tified as having real mutations. Again, we created a 2 × 2
contingency matrix of observed frequencies, which is then
used as the input for the chi-square test. For every posi-
tion, we choose the variant with the highest average chi-
square statistic for all the tests for pairs containing that
variant.

Haplotype/Strain identification analysis

We begin by focusing only on the variants inferred as bona
fide mutations in the last stage. This means that in principle
there are 2n possible haplotypes bearing these mutations.
We filter out reads with variants that do not match our infer-
ence (for example, if one of the inferred mutants is A535G,
we filter out reads with the nucleotides C, T or a deletion at
position 535). We then use our inferred 95 percentile error
thresholds (Table 1) to deduce which combinations of muta-
tions are likely to be true and which may have been created
by the technical error rate.

We use an iterative approach to classify which of the 2n

haplotypes is reliable. First, for every single nucleotide vari-
ant, we group together all of the haplotypes that include
this base variant (a haplotype can appear in more than one
group). Second, in each group, we compute the relative fre-
quency of each haplotype as its proportion of all haplo-
types in the group. We iterate through the haplotypes from
highest frequency to lowest, classifying each haplotype as
reliable or not. The first haplotype is automatically classi-
fied as reliable. For every haplotype, we compare its relative
frequency with the probability that it is created by techni-
cal errors from the closest haplotype classified as reliable,
called its parent haplotype, using the inferred error thresh-
old. For example, if a haplotype has an additional deletion
and substitution when compared to its parent haplotype, we
require that its relative frequency be higher than the product
of 0.214 × 0.237 = 0.051 to be classified as reliable (using
the 95th percentile error frequencies in Table 1). We iterate
through the haplotypes until classifying all the haplotypes
in each group. If reads for a WT haplotype exist, the WT
is also treated as a base for a group – which in this case
will include all of the observed haplotypes. Haplotypes may
appear in more than one group, if a haplotype appears as
reliable in at least one group it will be classified as reliable
overall. See supplementary text for a visual summary of the
algorithm we employ.

The code we provide produces a file with all the vari-
ant combinations observed, the calculations described
here and whether a haplotype is reliable or not. It also
produces a file with the haplotypes classified as reli-
able, with their proportion in the population recalculated
appropriately.

Sequencing data and code availability

The sequencing data created and used in this study is avail-
able in the Sequencing Read Archive (SRA, https://www.
ncbi.nlm.nih.gov/sra), under BioProject PRJNA547685.

The accompanying code can be found at https://github.
com/SternLabTAU/AssociVar.

RESULTS

We set out to sequence two evolved populations of the MS2
coliphage. Both populations were derived by fifteen serial
passages performed at 37◦C (denoted as A and B) as part of
an evolve-and-resequence experiment (Methods). We first
performed deep sequencing of both populations at passage
15 with the Illumina MiSeq platform (34). This revealed sev-
eral segregating mutations (Figure 1), some of which shared
similar frequencies. However, due to the short-read nature
of the sequencing it was impossible to infer whether these
mutations co-occurred on the same genome.

We next sequenced the same two populations of RNA
viruses from passage 15 using Oxford Nanopore’s MinION.
Importantly, we employed direct RNA sequencing, without
using reverse transcription or PCR amplification, and with-
out any shearing of the genomes. The only requirement for
library preparation was the ligation of an adaptor to the 3′
of the RNA genome, allowing the 3′ to enter the sequencing
pore. Each replica was sequenced independently, denoted
as p15A and p15B. We also sequenced a sample from line
A passage 1 using both Illumina MiSeq and MinION. As
this was a mostly unevolved and homogenous population,
we used this as a control sample.

Read lengths and alignment

A total of 417,000, 105,000 and 400,000 reads were pro-
duced for the MinION-p15A, MinION-p15B and the con-
trol runs, respectively. In order to map the reads to the MS2
reference genome we ran our computational pipeline (Mate-
rials and Methods) (34), which infers the proportion of each
point mutation (A, C, G, T or ‘–’) at each position in the
genome. Over 97% of the reads were mapped to the refer-
ence, yet often sequencing terminated before it reached the
5′ end in both the evolved and control populations (Sup-
plementary Figure S1). Nevertheless, ∼15% of the reads
(between ∼15,000 and ∼60,000) covered the entire MS2
genome.

Distribution of observed variants and MinION error rates

We next focused on the frequency of an observed variant,
defined here as any base called differently from what is
present in the reference sequence, at any position. We ex-
pect such variants to be the sum of two independent pro-
cesses: real biological variations derived from evolutionary
processes in the phage populations, and technical errors in-
troduced by the sequencing process. Comparing between
the variant distributions of Illumina and MinION, it was
evident that MinION suffers from a very high technical er-
ror rate (Figure 2). Notably, in the control population the
number of variants exceeding a frequency of 1% in the Il-
lumina sequencing was 12, whereas with MinION we ob-
served 8917 variants in 3326 positions exceeding 1%. This

https://www.ncbi.nlm.nih.gov/sra
https://github.com/SternLabTAU/AssociVar
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Table 1. Estimated error frequencies for MinION sequencing. Shown are mean frequency values, 95th and 99th percentile values for each type of error,
based on the control sample (Materials and Methods)

Mean error frequency 95th percentile error frequency 99th percentile error frequency

Substitutions 0.07 0.21 0.33
Deletions 0.07 0.24 0.43
Insertions 0.01 0.04 0.08

Figure 1. Mutation frequencies in two MS2 phage populations evolved over 15 passages, based on Illumina sequencing. Shown are the frequencies of
mutations that were detected at a frequency >10% in passage 15 in either of the two replicate populations. Mutations are spread horizontally for visual
clarity only.

allowed us to infer that the vast majority of MinION vari-
ant frequencies are technical errors, and further allowed
us to roughly estimate the various types of MinION error
rates for our experiment (Table 1). Notably, we observed
that the point deletion and point insertion rates together
exceeded the substitution rate, reinforcing previous obser-
vations (36,37).

We attempted to use the inferred MinION error rates as
thresholds that can distinguish between real mutations from
errors, by setting the 95th percentile obtained for the control
sample as an error threshold for each type of error (Table 1).
This naı̈ve approach that is often used, quickly turned out
to be invalid, as corroborated by our parallel Illumina re-
sults. For example, we knew from the Illumina results that
only 6 mutations in line A and 8 mutations in line B ex-
ceeded a frequency of 10% at passage 15 (Figure 1). How-
ever, the MinION results showed 1168 mutations in 949 po-
sitions and 1081 mutations in 879 positions exceeding 10%
in both replicas, respectively.

Associations between variants in MinION

We sought a strategy to weed out the technical errors from
the real mutations in the MinION results independently of
the Illumina results. We calculated the conditional proba-
bilities of observing one variant given another variant ob-
served on the same read (Figure 3). When observing the
pattern of conditional probabilities, we noted two distinctly
different patterns. Some variants co-occurred more or less
randomly with all other variants, manifested as more or
less the same probability of observing one variant given any
other variant (similar colors across a given column in Fig-
ure 3A). On the other hand, some variants displayed a non-
random pattern, where the probability of observing variants
together depended very much on which pair of variants was

examined (different colors across any given column in Fig-
ure 3B).

Importantly, the variants that displayed a non-random
pattern were variants that we knew were true mutations
based on the Illumina data. This led us to realize that ran-
dom technical errors are expected to display a different
pattern than real biological mutations: we expect techni-
cal errors to be associated randomly with any other tech-
nical error, whereas a pair or more of real biological muta-
tions are expected to be non-randomly associated with each
other. This is a reflection of evolutionary processes operat-
ing on genomes. While mutations created from replicative
polymerases will be mostly randomly distributed along the
genome, selection and genetic drift will lead to the fact that
specific combinations of mutations reach higher frequency.
Thus, true mutations that are prevalent in a population will
tend to be either present with some other mutations on the
same genome/read, or not present with some other muta-
tion on the same genome. Both these properties (tendency
to be present or not present with other mutations) reflect
non-random association between mutations.

One of the most commonly used methods to test for asso-
ciations between two properties is the chi-square test: here
we use this test to see whether the observed joint variant
counts deviate from what is expected when variants are
counted independently. To this end, each variant was classi-
fied as either wild-type (WT) or non-WT, based on whether
it was identical or not to the reference genome. Notably,

this led to (
3509

2 ) ≈ 6 · 106 different tests. Because the ob-

servation count highly affects the chi-square result and the
MinION sequencing coverage increases greatly along the
genome, we only used reads spanning the entire genome of
the virus for this analysis (Materials and Methods, Supple-
mentary text).



e148 Nucleic Acids Research, 2019, Vol. 47, No. 22 PAGE 6 OF 12

Figure 2. Variant distributions from the populations sequenced using Illumina (A, C, E) and MinION (B, D, F) for samples control (A, B), p15A (C, D)
and p15B (E, F). Variants are broken down by the type of mutation they cause, substitutions or point deletions. ‘X’ indicates a single base deletion, ‘-X’
indicates a single base insertion and ‘XY’ indicates X replaced by Y (where X and Y are any of the four bases).
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Figure 3. Conditional probabilities P(column|row) of observing one variant (column) in the presence of a second variant (row) on the same read. Bottom
row shows P(column), probability of variant in column. The analysis was performed on the set of reads spanning across the set of positions in each table,
filtering out for reads that were either non-WT or did not contain the specific mutation in the table. Cells are color-coded using a gradient to highlight
similar values across cells. (A) The highest frequency-presenting variants in MinION for line B (top three substitutions and top three deletions), all of
which were not detected using Illumina and thus classified as technical errors. Values across a given column are more or less identical (with the exception of
seeing a variant with itself), showing that P(X|Y) = P(X). (B) The mutations identified by Illumina in line B. Values across a given column are sometimes
dramatically different. For example, looking at the A1744G column, A1744G tends to be highly associated with T1440C and A1611G, somewhat associated
with A1664G and G1906A, and not at all associated with A535G, T1764- and G3114A. This pattern supports the fact that these are all bona fide mutations
rather than technical errors.

We began by inspecting all associations between all pairs
of positions. This allowed us to make a few general obser-
vations. First, we observed that proximal pairs of positions
(residing up to 15 bases apart from each other) tended to
be highly associated. We postulate that this is a reflection
of MinION errors, and also the high deletion rate, which
could cause slight misalignment of reads covering positions
proximal to the deletions. Second, we observed a very sim-
ilar pattern of associations among the three samples. This
suggests that MinION sequencing has a tendency towards
specific a pattern of errors for a given genome that is se-
quenced (Supplementary Figure S2).

We devised a method called AssociVar that detects the
real variants in the data, based on the following proper-
ties: (a) the method searches for the strongest non-random
associations, (b) the method takes into account that pairs
of proximal positions (i.e. up to 15 bases apart) that have
high associations between them are likely false positives in-
duced by the MinION machine itself, (c) in order to make
the different positions comparable, the method normalizes
the distribution of chi square scores per position, essentially
searching for outliers from all the associations of a given po-

sition, (d) the method also takes into account that because
proximal positions are highly associated, a position next to
a real mutation may be associated with other real mutations
due to transitivity. However, we expect the two real muta-
tions to display the highest association, i.e. we require an
association to be a local maximum in a given window. Fi-
nally, (e) the method uses a control sample to set a cutoff for
the highest associations (Materials and Methods). Associ-
Var hence calculates a normalized chi-square statistic and
infers the positions where ‘true’ variation occurs, based on
the above properties (Figure 4).

After applying AssociVar to the data, we were able to
identify five out of the six mutations appearing at a fre-
quency above 10% in the Illumina results in p15A, and
all eight positions within the p15B sample (Figure 4, Sup-
plementary Table S2). Notably, AssociVar also often cor-
rectly identified mutations segregating at lower frequencies
(1–10%) according to Illumina. When focusing on the false
positive rate of the method, AssociVar reported one out of
3467 positions as false positives for p15A and two out of
3475 for p15B, where false positives are defined as positions
identified in the association analysis but segregating at a fre-
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Figure 4. Chi-square statistics plotted along the genome for the (A) p15A and (B) p15B MinION sequencing. Each dot represents the normalized chi-square
statistic between a given variant and another variant at a position more than 15 bp apart. Associations marked in blue are classified as non-significant.
Associations marked as green are true positives, where the position in the genome they identify is a real mutation as verified by Illumina sequencing.
Associations marked as red identify positions that are false positives and do not have real mutations according to the Illumina results (one position for
p15A and two positions for p15B). The red line illustrates the cutoff defined by the control sequence. Notably, the blue dots above the line are positions
near real mutations, removed by AssociVar via the requirement for a local maximum (Materials and Methods).

quency lower than 1% according to Illumina. All in all, the
results indicate that our association approach has the power
to resolve real variants from technical errors based on the
MinION data alone.

We began the analysis by classifying mutations into WT
and non-WT, for computational tractability. Next, identi-
fying the specific nucleotide variant in our samples after
having identified the positions with real mutations is easy
enough using a similar approach. Every position has four
possible variants (the three nucleotides different that the ref-
erence and a deletion for that base), and we test these varia-
tions against each other, again––under the assumption that
the most highly associated variant for each position is the
real one (Materials and Methods). For the positions iden-
tified by our association analysis and verified as correct by
the Illumina sequencing, all but one of the positions were

matched with their correct variant with this method (po-
sition 3114 in p15B was identified as a deletion instead of
nucleotide A).

Identifying mutations in the absence of a control sample

The MinION RNA sequencing kit comes with a control se-
quence of the enolase II yeast gene. We ran our association
analysis on the enolase results, originally to verify that we
pick up no variation in this gene. However, we were sur-
prised to see two positions with a very high and outstanding
association (Figure 5).

We thus sequenced the same sample with the Illumina
MiSeq platform. Reassuringly, the results verified the find-
ings of AssociVar and showed that these two variants do
appear in the sample and are the only two variants that ap-



PAGE 9 OF 12 Nucleic Acids Research, 2019, Vol. 47, No. 22 e148

Figure 5. Chi-square statistics plotted along the gene for the enolase yeast gene. Two positions stand out as having a high association with each other,
363 and 606, evident by the two high peaks in the figure (green). Notably, other high associations were ruled out as induced by proximity with the local
maximum analysis (Materials and Methods). Since we do not have a control sample for this gene, we cannot use it to infer a cutoff. However, the association
between these two positions is so prominent when compared to the rest of the data that we were able to conclude they are between positions with ‘true’
variation (as later verified by Illumina).

pear there at a frequency higher than 10%. This suggests
that our method can be used (a) as a general approach and
not only for virus populations, and (b) in the absence of a
control.

We next tested our method on a sample of Zika virus
genomes (30). In this study, two different strains that dif-
fered at several positions had been artificially mixed and se-
quenced using MinION. We ran AssociVar on one of the
sequenced amplicons, in the absence of a control sequence.
At least five of the six true mutations in this amplicon stood
out as having highly prominent associations (Supplemen-
tary Figure S4).

Finally, we tested how our method fares in the absence
of a control for our MS2 data, and compared the true posi-
tive rate versus false positive rate as a function of (a) thresh-
olds set for the normalized chi-square statistic, and (b) a fre-
quency threshold from the Illumina results that determine
when we define a mutation as true or false. We further com-
pared this to the use of a ‘naı̈ve’ approach where we use a
varying frequency threshold for the MinION results (as de-
scribed above). Our results show that AssociVar inference
is consistently much more accurate that the naı̈ve approach,
and moreover, can be used even to detect mutations at a fre-
quency of 1%, at the risk of some false positives (Figure 6).

Haplotype/strain identification

One of the main goals of MinION sequencing, in particular
in the context of RNA virus evolutionary experiments, is the
detection of haplotypes and identification of distinct strains
in the population. We thus set out to use the approach we
devised to infer the composition of strains in our MS2 sam-
ples. Notably, this is challenging on two fronts: first, our as-
sociation approach can tell us which mutations in the Min-
ION data are real, and which pairs are associated, but it
does not tell us what their frequency is (or rather, we do
not trust the observed frequencies given the very high er-
ror rate). Second, we are interested in inferring haplotypes,

i.e. which mutations reside together regularly on the same
genomes and which do not. Once again, the high error rate
makes this extremely tricky since we observe reads bearing
almost all possible combinations of mutations. In fact, most
reads bore so many variants, that ∼15–20% of the bases
called per read were different than the reference (Supple-
mentary Figure S5). In this case, we used a two-pronged
approach: we first focused only on variants inferred as true
mutations using our method, AssociVar, as described above.
Second, we used the inferred error threshold to infer the
probability of two or more variants residing erroneously on
the same genome, utilizing an iterative approach in which
we compare a given haplotype to haplotypes already clas-
sified as reliable (Materials and Methods). In our case, be-
cause the MS2 populations bore many mutations at low fre-
quencies, we also limited the analysis to variants that ap-
peared at a frequency of at least 5% in the MinION sequenc-
ing results.

The summary of inferred strains is shown in Table 2 and
provides a few interesting insights into our populations.
First, seventeen and ten different strains were identified
in each of the A and B populations, respectively. Second,
A1664G and T1764-, both of which rose to high frequencies
in both replicates, were found to be mutually exclusive in
both replicates. On the other hand, G3114- (which we know
from the Illumina data to actually be G3114A) was found
to be tightly linked to T1764-, in line with the very similar
frequencies of these mutations in p15B. All of these results
were unobtainable with the Illumina results alone and high-
light the added value of using MinION for inferring viral
genotypes.

DISCUSSION

We have developed here a simple and intuitive approach,
AssociVar, to (a) detect bona fide mutations from MinION
population sequencing, and (b) infer the set of haplotypes
(strains) present in a population. Our approach is based
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Figure 6. Receiver operating characteristic (ROC) of AssociVar versus a naı̈ve method. Performance of prediction of mutations is assessed using ROC
curves, where each curve is plotted as a function of the normalized chi-square statistic threshold for AssociVar (solid lines), or frequency threshold for the
naı̈ve method (dashed lines). The Illumina results are used as the gold standard test to define a mutation as true or false, and the three different colors
represent different thresholds for this definition. For example, for the blue line labeled as 10%, only mutations at a frequency higher than 10% according
to Illumina are defined as true.

Table 2. Strains in the p15A and p15B populations inferred by AssociVar and their respective read counts and frequency in the populations. Very low
frequency strains are not shown.

Strain Read count Frequency

p15A
T1764- 3301 0.243
A1664G 2353 0.174
T1764-, A2356G 956 0.071
C1724T, T1764- 878 0.065
C1131T 784 0.058
A535G, A1664G 702 0.052
T1764-, T2953C 634 0.047
T1475C, T1764-, T2953C 589 0.043
G531A, T1764-, C3100T 578 0.043
C1050T, T1764-, G2901A 524 0.039
A535G 519 0.038
T1764-, G2901A 387 0.029
A1664G, T2953C 378 0.028
C1050T 184 0.014
A1664G, C1724T 179 0.013
T1475C 168 0.012
C3100T 147 0.011
p15B
T1764-, G3114- 1203 0.292
A1664G 1006 0.244
A535G, A1664G 447 0.109
A535G 382 0.093
T1440C, A1611G, A1664G, A1744G, G1906A 309 0.075
T1764-, A3109-, G3114- 199 0.048
T1440C, T1593C, A1611G, A1664G, A1744G, G1906A 193 0.047
T1764-, G1906A, G3114- 113 0.027
G1906A 106 0.026
T1593C, A1664G 47 0.011

on the notion that sequencing errors will be randomly dis-
persed along the reads, whereas real mutations tend to as-
sociate with specific genetic backgrounds. In the case where
technical error rates are high (such as occurs with Min-
ION), this allows one to focus on the real genetic diver-
sity that is hidden in the vast array of technical errors gen-
erated by this method. Notably, our approach is general
enough so that it can be used for any type of long read
sequencing.

We applied AssociVar to sequencing data from an
evolved population of phages where Illumina sequencing
was available, allowing us to corroborate whether mutations
we found based on analysis of the MinION data alone were
indeed real. Strikingly, all but one of the high frequency mu-
tations observed in the p15A and p15B data (>10%) were
picked up using AssociVar, despite the fact that the 99th
percentile for technical errors was as high as 43% (Table 1).
In fact, despite the very high deletion rate, AssociVar accu-
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rately identified the one real deletion mutation present in
our populations, suggesting a very high sensitivity of the
method. Our approach also shows high specificity, with a
false positive rate lower than 0.1%. Finally, we have shown
that using a naı̈ve approach based on a frequency threshold
as a cutoff to separate real mutations from errors results in
extremely high false positive rates, demonstrating the value
of our approach.

Originally, when observing the data in Figure 1, as
a first approximation it seemed likely to assume that
mutations with a similar frequency would be muta-
tions shared on the same genomes. Accordingly, we
had hypothesized that at least two clusters of muta-
tions in line B (T1764-/G3114A/A1664G and A1611G/
A1744G/T1440C/G1906A/A535G) would be present on
the same genomes. This turned out to be only partially true:
mutations with similar frequency were sometimes indeed on
the same genomes (e.g. T1764-/G3114A), but sometimes
completely not (the former two and A1664G) (Table 2).
These results illustrate the utility of MinION to resolve the
relationships among mutations, and its advantage for dif-
ferentiating variants with mutations displaying similar fre-
quencies.

We further used our approach to perform the reverse
analysis: when analyzing the mRNA of the yeast gene eno-
lase, our analysis suggested that the mRNA population se-
quenced was not homogenous. This was then precisely ver-
ified by Illumina sequencing of the same population. Re-
markably, this analysis shows that (a) AssociVar can be
used to analyze different types of data, ranging from virus
genomes to mRNA of any organism, and (b) AssociVar can
be used without sequencing a control sequence. We note
that this requires more caution, since our analysis of MS2
showed that spurious associations between mutations may
be created artifactually by the sequencing process itself. Use
of AssociVar without a control sequence requires the user
to specify the threshold of the normalized chi square statis-
tic. As with all methods, the specificity of AssociVar comes
at the cost of sensitivity, and vice versa (Figure 6). Never-
theless, it seems the best strategy we can suggest is to use a
very high threshold, which is extremely effective for variants
at a frequency higher than 5 or 10%.

It is important to delineate the limitations of
our approach. We note that we cannot distinguish
haplotypes/strains that differ from each other at one
position only, because our method relies on the association
between two positions containing real mutations. Similarly,
if two strains differ at very proximal loci, AssociVar
will also fail, since we filter out associations between
mutations that are <15 base pairs apart. We postulate
that the presumably artifactual associations we observed
between proximal loci are induced by the RNA (or DNA)
passing through the pore of the sequencer. Finally, we also
noted specific patterns of mutations that were reproduced
between our control sequence and the two evolved popula-
tions of MS2. This suggests two possibilities: first, perhaps
sequence context and/or RNA secondary structure induce
specific errors in MinION, and second, it is possible that
MS2 genomes undergo RNA modifications and these are
the cause of these specific errors. MinION direct RNA
sequencing records the raw electric signal produced by the

RNA going through the pores, and this potentially offers
the opportunity to identify RNA modifications using a
newly developed tool called Tombo (version 1.5) by Ox-
ford Nanopore (https://nanoporetech.github.io/tombo/).
Unfortunately, we could not conclusively determine the
presence or effect of RNA modifications and its rela-
tionship to associated mutations. Our results suggest that
Tombo still suffers from a high false positive rate, while
the true positive rate of the method has not yet been deter-
mined (38). The former was demonstrated herein by a high
number of presumably modified sites found in the enolase
yeast gene, despite the fact this gene was created syntheti-
cally in vitro, where modifications would not likely occur.
We nevertheless analyzed our MS2 samples and found a
similar pattern of presumable modifications among the
three MS2 samples, yet there was no correlation between
sites with a high rate of modification and sites with high
normalized chi scores by AssociVar (see supplementary
text, Supplementary Figures S7–S10). While we cannot rule
out that RNA modifications are responsible for the pattern
of errors in MinION, we conclude that further research is
required to determine which factors induce these errors.

Although our method is ideal for direct RNA or direct
DNA sequencing, we also used the method for cDNA that
was amplified from RNA in the case of the Zika virus anal-
ysis (30) (Supplementary Figure S4). When we tried to re-
construct the known haplotypes present in this sample, our
method did not fully succeed to recapitulate the haplo-
types (data not shown). One possible explanation for this is
that during the amplification step, either chimeric sequences
of both strains were created, or PCR recombination oc-
curred, breaking down some of the linkage between sites.
In such cases, the use of AssociVar is limited to the detec-
tion of mutations only, and this further suggests that direct
RNA/DNA sequencing may be preferable.

To summarize, we anticipate that due to its ease of use
and advantages listed above, direct long read sequencing
using MinION will be increasingly valuable in the field of
virus genetics and in additional diverse fields such as tran-
scriptome studies, cancer genetics, and microbiology. The
AssociVar approach we suggest herein is simple and appli-
cable to any organism, and as such we hope it will be a useful
addition to the genomics toolbox in multiple fields.
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